

Douglas M. Hudgins

Program Scientist, Exoplanet Exploration Program NASA Headquarters, Washington, DC USA

Astro2010 Decadal Survey

- Science themes
 - Cosmic Dawn early universe, first stars and galaxy formation
 - New Worlds search for nearby, habitable, rocky planets with oxygen and liquid water
 - Physics of the Universe understand fundamental physical laws and principles
- New Worlds Science Objectives
 - Complete the statistical census of exoplanetary system architectures, abundance of Earth-sized planets on large orbits.
 need an "unbiased" survey of the demographics of exoplanetary systems.
 - Survey Earth-mass planets/planetary systems Solar neighborhood provide most promising candidates for observations with future direct-detection mission.
 - Characterize the exozodiacal dust clouds in exoplanetary systems
 understanding exozodi dust levels and distribution crucial to design of future direct-detection
 mission and analysis of observations.
- Highest priority Large space mission is Wide Field Infrared Survey Telescope (WFIRST);
 second Large priority is augmentation to Explorer Program to increase flight rate
- Highest Medium priority is New Worlds Technology Development Program to prepare for a planet-imaging and spectroscopy mission beyond 2020, including precursor science activities.

Astro2010 Decadal Survey

Key New Worlds Implementation Recommendations:

- Perform a microlensing exoplanet survey from space using WFIRST to characterize in detail the statistical properties of habitable terrestrial planets.
- Improve RV measurements on existing ground-based telescopes to locate the prime targets for hosting habitable, terrestrial planets among our closest stellar neighbors and discover planets as small as 2-3 M_{Earth} as targets for future space-based directdetection missions.
- Use ground-based telescopes [...] or space-based Explorers, to characterize the dust environment around stars like the Sun, so as to gauge the ability of future missions to directly detect Earth-size planets in orbits like that of our own Earth.
- Develop the technology for future space mission to study nearby Earth-like planets.
- Use **JWST** to characterize the atmospheric and/or surface composition of planets down to super-Earth masses orbiting the coolest red stars.

Astro2010 Recommendation L-1: Wide-Field IR Survey Telescope (WFIRST)

WFIRST is the top recommended Astro2010 Large project for a near-IR space observatory to do wide-field imaging and low-resolution spectroscopy

 Designed to conduct cosmic expansion, microlensing exoplanet census, and other galactic and extragalactic large-area surveys, including pointed guest observer programs

Near-term mission concept study (pre-formulation) activities. The WFIRST Science Definition Team has been selected and had their first kick off telecon on Jan 3. The first face-to-face meeting will be in February 2011.

- The SDT preliminary report to be completed by summer 2011; final report by the end of 2012.
- The SDT has been asked to develop a design reference mission (DRM) that meets
 - the science goals stated in New Worlds New Horizons (NWNH) decadal report
 - the launch date envisioned by NWNH (to be launched by 2021)
 - the cost cap established after the FY 2012 President's Budget Request is released in February.
- Two DRMs need to be worked on for the preliminary report due in 2011:
 - One that assumes Euclid is selected by ESA and launches before WFIRST
 - One that outlines a framework for a combined WFIRST/Euclid mission
- The final report due in 2012 will reflect ESA's decision on Euclid

Wide-Field IR Survey Telescope (WFIRST)

Important considerations

The budgetary and science environment in which WFIRST is developed will impact its implementation.

Budget environment:

- Budget profile and schedule for JWST dominate considerations of when WFIRST development may begin
 - Significant funds for the next Astrophysics flagship not available until after JWST launches

Science environment:

- LSST (top Large ground-based priority of Astro2010) and other ground-based telescopes
- Investigations by Hubble, Chandra, Spitzer, JWST, etc.
- Potential Explorer selections
- Potential missions under development by other nations (e.g., Euclid)

Astro2010 Recommendation L-2: Augmentation to Explorer Program

NASA's Explorer Program: Competed, PI-led missions that deliver a high level of scientific return on relatively moderate investments and that provide the capability to respond rapidly to new scientific and technical breakthroughs.

Astro2010 Recommendation: Augment budget to support 2 MIDEX missions (ca. \$300M), 2 SMEX missions (ca. \$160M), and 4 MoOs (ca. \$35M) in coming decade.

For the coming decade, the Explorer program represents the only foreseeable path to a dedicated Exoplanet Exploration mission, and the only path to a space-based platform which could, for example:

- Survey nearby planetary systems and/or their dust environments as emphasized in Astro2010
- Demonstrate key exoplanet measurement technologies upon which a future flagship mission might be based.

Astro2010 Recommendation M-1: New Worlds Technology Development

New Worlds Technology Development Program - a competed program conceived to lay the technical and scientific foundations for a space mission in the 2020 decade capable of imaging and spectroscopy of rocky planets that lie in the habitable zone of their parent stars.

Astro2010 Recommendations:

- Increase of \$4M/yr in exoplanet technology development through mid-decade, ramping up rapidly thereafter leading to a mature mission concept for consideration by 2020 Decadal survey; total investment over decade \$100M - \$200M.
- Development of candidate starlight suppression techniques (coronagraphy, interferometry, star-shades) should continue through mid-decade. If scientific groundwork and design requirements for a direct-detection mission are clear by middecade, a technology down-select should be made and subsequent technology investments focused on most promising mission architecture.
- Goal: Mature concept of flagship mission for imaging and spectroscopy of habitable, terrestrial exoplanets for consideration by 2020 Decadal Survey.

New Worlds Technology Development

Existing Astrophysics SR&T programs provide vehicle for implementation

- Astrophysics Research and Analysis (APRA)—fundamental research into new technologies, TRL levels 1-3.
- Technology Development for Exoplanet Missions (TDEM)—mid-TRL maturation of established technologies, TRL levels 3-6.

Includes **mission-enabling*** ground-based precursor science activities. For example:

- High-precision RV surveys of planetary systems in Solar neighborhood
- Characterization of exozodiacal dust disks (e.g. opacity, distribution, evolution)

^{*} science that advances technologies or informs the design of future NASA flight missions.

Other Astro2010 Recommendations and Ongoing Activities

Several Small Initiatives recommended by Astro2010 will likely contribute to NASA's Exoplanet Exploration activities:

- Augmentations to NASA's Astrophysics Theory and Laboratory Astrophysics Programs
- Augmentation to Suborbital Program
- Definition of future UV/optical space capability

Key, ongoing activities that will continue in the coming decade:

- Continued operation of the Kepler mission and support of Kepler science.
- Keck/HIRES RV studies and follow-up of Kepler observations.
- Characterization of exozodiacal dust with the LBTI.
- Support of fundamental exoplanet research through competitively selected R&A programs (e.g. Astrophysics Data Analysis, Astrophysics Theory, Origins of Solar Systems, Planetary Atmospheres, etc.)

Impacts of Astro2010 – SIM-Lite

- Decadal Survey did not include SIM-Lite in its recommendations
 - \$1.9 billion price tag (per Astro2010 cost estimate) and ca. 8.5 yr time to launch make it uncompetitive in rapidly changing field of exoplanet science.
 - "The role of target-finding for future direct-detection missions, one not universally accepted as essential, can be done at least partially by pushing ground-based radial-velocity capabilities to a challenging but achievable precision below 10 centimeters per second."
- In 24 Sept. 2010 letter, NASA Science Mission Directorate formally discontinued sponsorship of SIM Lite and directed project to discontinue Phase B activities immediately.
 - Project was shut down effective 31 Dec. 2010.
- Closeout activities:
 - Residual SIM hardware will be retained by the NASA Exoplanet Exploration Program (ExEP) for potential future use.
 - SIM technology and design documentation will be archived.
 - SIM personnel moving on to new work.

NASA/Astrophysics Division Budget Profile 2008 - 2015

Projected budget for NASA's Astrophysics Division is essentially flat at around US\$1B through the middle of the decade

NASA Astrophysics Division Budget Profile 2009 - 2015

NASA's Exoplanet Exploration Activities in the Coming Decade.

Kepler: Continue to operate and support the science of NASA's first dedicated exoplanet exploration flight mission.

WFIRST: Initiate science definition, requirements development, design engineering activities immediately, with a formal project start as resources permit.

Astrophysics Explorer missions: competed program, exoplanet exploration mission proposals expected to be strong candidates.

New Worlds Technology Development: fundamental technology research and technology maturation leading to the development of a mature, direct-detection mission concept for consideration by the 2020 decadal survey; mission-enabling precursor science.

Fundamental Exoplanet Science: investigations supported through a variety of open, competitive R&A and GO programs.